Overview of the BlueGene/L Torus Network

Outline

- Hardware overview
 - ► Basic structure and capabilities
 - ► Reliability features
 - Dynamic routing and arbitration details
- Simulators
 - ► Near cycle accurate simulator
 - Used during design phase to study performance tradeoffs
 - Sample performance studies
 - ► Multi-node VHDL testbench
 - Using to verify the actual hardware design

Torus Network Overview

- 3-D torus with dynamic routing
- Point-to-point and broadcast down row messages
- 32 to 256 byte packets (multiples of 32) + 4 byte trailer
- Packet CRC + retransmission protocol for reliable delivery
 - ▶ 8 byte acks and token/acks
- Target bandwidth:
 - ▶ 1.4 Gbs/link (1 bit wide): 1 byte/4 processor cycles
 - ► 175 MBs/link
 - ► 1.05 GBs/node
 - ► Flexibility to clock 2x faster/slower, depending on link error rates
- Per-hop latency
 - ► = capture + torus logic + drive + wire/cable
 - ► torus logic: 12 cycles*5.7 ns/cycle = 69 ns
 - ► capture + drive = 12 ns
 - ▶ wire/cable: 1 to 135 ns
 8 ns (average)
 - ► total (average) 89 ns/hop

Packet Format

8B	24 - 248B	4B
Header	Packet Data	Trailer

- Header
 - ► Routing information (destination, vc, size, dynamic, broadcast)
 - ► Sequence number and CRC
- Packet Data
 - ► Expect 8B MPI software overhead/packet
 - ► MPI Payload: up to 240B/packet
- Trailer: CRC
- Payload Efficiency
 - ► = 240 / [256 (packet) + 4 (trailer) + 8 (token/ack) + 2-4 (idles)]
 - **►** = 88%

Torus Router Structure Processor Interface **Torus Receiver** Bypass Path Dynamic VC1 Torus Dynamic VC 2 Sender Escape VC High Priority VC

- Virtual Cut Through Architecture
 - ▶ Dynamic routing with 2 Virtual Channels (VCs) to improve throughput
 - ► Token flow control for VCs to prevent overflows
 - ► Escape VC used for deadlock prevention and deterministic routing
 - ► High priority VC for inter-node OS messaging
 - ▶ 1 KB/buffer
- Multiple simultaneous transfers from receiver to sender/processor
- Multiple injection and reception fifos
- Complex arbitration policies to avoid contention
- Error checks and retransmission of corrupted packet

Dynamic Routing

- No routing tables
- Packet may be dynamically or statically routed
- "hint bits" in header determine directions
 - ► eg, 011000 x- and y+ moves are allowed
 - ▶ set by hardware upon injection, or software
 - modified as packet flows through network
 - no direction reversal
 - set to 0 when packet reaches destination

Arbitration

- ▶ Join the shortest queue approximation to select direction & vc
- ► Serve the longest queue approximation to select winner

Fault Tolerance

- ► Torus node can still operate even if other parts of node cannot
- ▶ Dead node or link can be avoided by having sw set hint bits
- ► Full connectivity with up to 3, non-colinear, faulty nodes in partition
- ► Link CRC and (different) packet CRC

Near Cycle Accurate Simulator

- Extensively used in design of BG/L
 - ▶ number and size of virtual channels
 - ▶ arbitration policies
- Runs in parallel on an SMP
 - Excellent speedup
 - ➤ ~ 0.5 BG/L microseconds / second (large torus, heavy traffic)
- Driven by
 - ► pseudo-codes
 - ▶ UTE traces
- MPI messaging protocol model
- Delivered to LLNL, Cal Tech., SDSC

Sample Performance Study: MPI_Alltoall

- Each node sends a different message to every other node
- Important MPI call used extensively in applications
- Stresses the network

Link Utilization During MPI_Alltoall on a 32K (32x32x32) Node BG/L Equal Total Buffer Sizes (3 KB for non-priority)

Average Network Latency

32K Node BlueLight Under Random Traffic Pattern Sparse Solver with Random Mapping 256 Byte Packets, 4KB Buffers/Link (+1KB for Escape)

Network Performance Under Extreme Non-Uniform Load

4K Node BlueLight Under Hot Region Traffic (25% of Traffic to 12.5% of Machine)
2 Dynamic VCs, 2 Paths, Bubble Escape

- Sends only
- Throughput into hot region stabilizes near peak bandwidth
- Larger buffers slow decline in throughput, but stabilize near same level

32K Node BlueLight Under Random Traffic Pattern 256 Byte Packets, 4KB Buffers/Link (+1KB for Escape)

4K Node BlueLight Under Hot Region Traffic (25% of Traffic to 12.5% of Machine) 2 Dynamic 2KB VCs, 2 Paths, 2KB Bubble Escape

3D - FFT Communications Study

- Two communication phases
- Planar Phase:
 - send/receive a message to/from every node in the same x,y plane
- Row Phase:
 - send/receive a message to/from every node in the same z row
- Data set size: 1024^3 (doubles) on 16x16x16 BlueLight
- 8 KB messages for Planar phase
- 128 KB messages for Row phase
- Key performance metric is sustained link bandwidth
- Planar:
 - ► 86% payload out of max physical
- Row:
 - ► 88% payload out of max physical
- Can maintain close to full link utilization